
LINEEX: Data Extraction from Scientific Line Charts

Shivasankaran V P*, Muhammad Yusuf Hassan*, Mayank Singh
IIT Gandhinagar, Gujarat, India

vp.shivasan@iitgn.ac.in, md.hassan@iitgn.ac.in, singh.mayank@iitgn.ac.in

Abstract

In this paper, we introduce LINEEX that extracts data
from scientific line charts. We adapt existing vision trans-
formers and pose detection methods and showcase signifi-
cant performance gains over existing SOTA baselines. We
also propose a new loss function and present its effec-
tiveness against existing loss functions. In addition, we
synthetically created the largest line chart dataset com-
prising 430K images. The code is available at https:
//github.com/Shiva-sankaran/LineEX .

1. Introduction

The modern world generates large volumes of data ev-
ery day, but most of it is unusable due to processing, rep-
resentation, and storage challenges. Scientific papers, too,
contain a large proportion of non-textual content, such as
charts and images, that do not serve more purpose than vi-
sualization [15]. This non-textual content, if successfully
processed, can be used in designing high-quality schol-
arly search engines [21], machine-generated task-specific
leaderboards [20], and scholarly assistants for impaired
people [22]. With the advent of deep learning architectures
and the availability of large volumes of scholarly datasets,
we have witnessed a recent surge in efforts to extract data
from scientific charts. However, most of these works suffer
from prevalent ML-related challenges such as reproducibil-
ity and inaccessibility (see Table 1 for more details). To
this end, we aim to develop a chart information extraction
system that is entirely reproducible, publicly available and
produces high-quality output.

In contrast to existing chart extraction systems that ex-
tract information from all possible types of charts, the cur-
rent work focuses on line charts. We propose a system,
hereafter LINEEX, that leverages powerful transformer ar-
chitectures [23] for information extraction from line charts.
The proposed system is inspired by vision transformers [8]
that have recently outperformed all existing state-of-the-art

*Equal contribution

systems. LINEEX comprises three modules (i) keypoint ex-
traction, (ii) chart element detection and text extraction, and
(iii) keypoints grouping, legend mapping and data scaling.
We robustly evaluate each module and compare it with the
state-of-the-art ChartOCR system [15]. In addition to the
proposed system, we created the largest synthetic dataset for
line chart information extraction. To summarise, the main
contributions of our work are:

• Construction of the largest line chart dataset compris-
ing 430K images incorporating diversity in the num-
ber of lines, font size, figure size, placement of legend
boxes, line color and marker styles, background, and
gridlines.

• Adapting vision transformer architectures for line
chart information extraction tasks.

• Showcasing limitations of existing loss functions and
proposal of a new loss function that addresses these
challenges.

• Legend-to-line mapping by matching line patches with
legend markers based on image similarity.

2. Scientific Line Charts
Line charts are the most common form of charts found

in scientific literature. Line charts are used to visually rep-
resent a series of data points or a mathematical function.
The main components of a line chart include (i) axes, (ii)
lines, (iii) a legend box and (iv) a chart title. Optionally,
the major components can be further subdivided into sub-
components. For example, the legend box comprises visual
markers (popularly known as legend marker) and associated
labels (popularly known as legend text), which are required
for mapping each line to its corresponding text-marker pair.
Similarly, axes comprise titles and ticks. Figure 1 show-
cases and describes a simplistic variant of a line chart com-
prising the above components.

For example, charts comprising a legend box inside the
chart area with two or more columns for listing text-marker
pairs, log scaled axes, or inclined axes ticks. Secondly, we
find chart variants comprising different stylistic features,
such as lines of different thicknesses, dashed or continu-
ous lines, or lines with or without markers. Lastly, differ-



System Name Axes Lines Legends Title Scaling Legend-line
Mapping

Code-base
AvailabilityTitle Ticks Keypoints Thickness Dashing Marker Text

FigureSeer [19] ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓
ChartOCR [15] ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✓
Linear Programming [14] ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✗

LineEX (ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Comparison of existing chart data extraction methodologies for different line chart components.

Figure 1: The different components of a line chart.

ent plotting software can generate different visually-looking
charts with the same underlying input.

Due to high complexities and diversity, the field of chart
data extraction has been relatively less explored. Most of
the existing chart datasets (see Table 2 for more details) are
synthetic, such as the Adobe Synthetic Chart Dataset [6]
and SYN dataset [14]. A few real datasets are curated from
the web such as FigureSeer [19], ExcelChart400k [15] and
the ICPR-2020 [7]. Real chart datasets are relatively dif-
ficult to curate due to problems associated with the man-
ual efforts required to annotate all the components. On the
other hand, synthetic chart datasets are generated automati-
cally using plotting software comprising synthetic data val-
ues. These datasets are usually more limited in diversity
than real datasets but can be constructed in large numbers
with minimum human effort.

Given the requirements of extensive manual efforts in cu-
rating real datasets, we propose a new line chart dataset. It

Name Type Instances Systems PublicFull Line
FigureSeer [19] Real 60k 60k [19][15][14] only 1k
Adobe Synthetic [6] Synthetic 198k 4.2k - ✓
ICPR-2020 [7] Real 23k 10k - ✓
ExcelChart400k[15] Real 400k 122k [15][14] ✓
SYN[14] Synthetic 64k 64k [14] ✗

Our dataset Synthetic 430k 430k LineEX ✓

Table 2: Comparison of different chart data extraction
datasets.

contains 430k line charts generated from Python’s popular
Matplotlib library1. Our dataset comprises charts contain-
ing 2 to 6 lines. It also contains annotations for bounding
boxes for all possible chart components. Diversity in the
generation process includes a random number of lines, font,
and figure size. We also implement diversity in the place-
ment of legend boxes. Lines have variations in color and
marker style (dots, dashes, and shapes). We generate plots
with 27 different plotting styles that bring diversity in line
markers, backgrounds, and gridlines. The chart text (chart
title, axes labels, legend labels) is randomly generated from
alphanumeric strings. Further, we segment our dataset into
400,000 images for training, and 10,000 images for valida-
tion and 20,000 images for the test.

Table 2 compares our dataset against existing datasets.
It is the largest among existing line chart datasets and ap-
proximately 4X larger than ExcelChart400k [15]. In con-
trast to the existing synthetic line chart datasets such as
Adobe Synthetic Chart Dataset [6] and SYN dataset [14],
our dataset also contains variations in the plotting styles,
with charts ranging from darker to brighter backgrounds,
bounding boxes around plot area and legend area. Addition-
ally, Adobe Synthetic Chart Dataset does not map the leg-
end marker and text pair to the respective lines. In contrast
to the largest existing real dataset ExcelChart400k [15], our
dataset also contains annotations for legend markers, leg-
end texts, tick texts and their corresponding boxes. Figure 2
shows two representative line charts from our dataset with
different background, tick and legend placement styles.

3. Related Work
Most earlier chart data extraction methods used heuristic

and rule-based techniques to extract data according to the
different chart types. The works by [18] and [10] first clas-
sify the chart type using a Support Vector Machine, which
is then followed by the use of heuristic based data extrac-
tion methods. Such rule-based methods have become less
prominent due to the lack of generalisability to real-world
data and the need to hand-engineer features. To improve
results, some hybrid methods like ChartSense [13] also in-
clude some human feedback in the data extraction process.
These hybrid methods give better results, but they also use
human time and labour and thus cannot be implemented into

1https://matplotlib.org



(a) White background with six lines (b) Dark background with five lines

Figure 2: Representative line charts from our dataset with different plotting styles. The two charts have different legend
placement coordinates.

an automated pipeline.
Recently, efforts in deep learning based models have

been shown to give better results in chart data extraction.
These methods usually build upon object detection mod-
els and adapt the processing according to the chart type.
ChartText [4] uses a Convolutional Neural Network to clas-
sify the chart type, then runs object detection models to
extract text and labels. Then, type-specific image process-
ing is done to extract the data. ChartOCR [15] also uses
a CNN to classify the chart type, which is then followed
by a keypoint detection model to extract certain pre-defined
keypoints based on the chart type. Postprocessing is done
based on the detected chart type to extract chart data us-
ing the identified keypoints. These methods perform better
than rule-based methods, but they still give problematic re-
sults on real-world data. Also, the ChartOCR model does
not allow for legend mapping, i.e. identifying which line
corresponds to which legend marker or label. Recently,
ChartOCR scores are outperformed by linear programming-
based approach [14]. However, the source code and trained
models are not publicly available.

4. The LineEX System

The LineEX system comprises a highly modular
pipeline. It consists of three main modules: (i) keypoint ex-
traction, (ii) chart element detection and text extraction, and
(iii) keypoints grouping, legend mapping and data scaling.

4.1. Keypoint Extraction

This module extracts keypoints that are joined in or-
der to create lines. For keypoint extraction, we adopt
the PE-former [17] architecture. PE-former is an end-
to-end encoder-decoder transformer architecture proposed
for human pose estimation. The best performing PE-
former variant comprises Cross-Covariance Image Trans-
former (XCiT) [3] as the encoder and DETR [5] based

transformer decoder. Figure 3 describes the architecture of
the keypoint extraction module.

4.1.1 The Architecture

In contrast to the COCO dataset’s 17 joint types, LINEEX
contains a single class representing a keypoint. Thus, we
do not pass the output tokens from the decoder through
a feed-forward neural network (FFN) based classification
head. However, we leverage FFN to regress each output to-
ken to two scalar values (x, y) in the range of [0, 1]. Note
that the number of ground truth keypoints in a chart varies
drastically based on the number of lines and the complex-
ity of the lines in the chart. A chart with a simple single
line typically has 6–10 keypoints, whereas a chart with 4–5
complex lines might contain more than 60 keypoints. We
fix the decoder input as M keypoint queries, where M = 64
keypoints. As consistency in the batch size is not possible
due to the diversity in the charts, we add multiple dubious
keypoints as (0,0) to the ground truth keypoints so that every
chart has exactly 64 keypoints. In some cases, the number
of ground truth keypoints is more than 64. In these cases,
we only take the first 64 keypoints as our ground truth. In
both these cases, we mask them appropriately, with 1 indi-
cating a true ground truth keypoint and 0 indicating a dubi-
ous keypoint. This mask is later used during loss calculation
so that the model’s weights are not affected by the addition
of dubious keypoints.

4.1.2 The Loss Function

Unlike 2D pose estimation problems, the precision of key-
point detection is crucial as the predicted keypoint should
lie on the correct line and not in the nearby region.
Distance-based loss functions such as L1 or L2 fail to cap-
ture this intuition. The problem is illustrated in Figure 4.
The predicted keypoint (in Red color) is closer to the ground
truth keypoint (in Green color) than the other predicted key-



Positional embedding

Im
age tokens

Transform
er encoder

Token features

M
 datapoint predictions

M datapoint queries

Transform
er decoder

Position FFN

Ground
truth

keypoints
Masking

Ground
truth

keypoints

Masked
keypoints

M Predicted keypoints

M Loss

Update weights

M
ask

Figure 3: Keypoint detection architecture.

point (in Blue color). However, as keypoint in Blue color
lies on the line, it is an ideal candidate than the keypoint
in Red color. To capture this intuition, we propose a new
loss function and term it as Angular Similarity Error (LA)
function.

Before formally defining LA, we define anchor points.
Each keypoint in the training line chart has an associated
anchor point. The anchor points are determined through
a neighborhood pixel search around the ground truth key-
points. Specifically, in our implementation, we define an
anchor point as a point that lies on the same line as the
ground truth keypoint and is within 5 pixels away from the
ground truth keypoint. All the anchor points are computed
and stored in the training data. The estimated first derivative
using anchor points is then used to calculate the angular sep-
aration between the predicted keypoint and the ground truth
keypoint.

We now define the LA as the angular deviation of the
vector joining the predicted keypoint and the ground truth
from the first derivative of the line at the ground truth key-

Figure 4: Comparison between predicted keypoints.
Ground truth keypoint is denoted by Green color. Predicted
keypoints are denoted by Red and Blue colors.

point. The first derivative at the ground truth keypoint is
computed using Newton’s difference quotient method. The
anchor point is used to evaluate the first derivative of the
line at the ground truth keypoint. Figure 5 illustrates this
idea visually. Consider the ground truth, predicted and an-
chor point as Y, Ŷ , and A, respectively. LA is formally
defined as:

LA = 1− cos(Y −A,Y − Ŷ ) (1)

We combine LA with standard L1 loss (LD) to define the
overall loss (L) as:

L = αLD + (1− α)LA (2)

where, α is a hyperparameter.
We propose two variants of our keypoint extraction mod-

ule, one with α = 1 (hereafter referred to as LINEEXD)
and other with α = 0.99 (hereafter referred to as
LINEEXD+A). LINEEXD is a pure L1 loss-based module,
whereas LINEEXD+A combines L1 loss with proposed an-
gular similarity error2.

4.2. Chart Element Detection and Text Extraction

The second module identifies axes, legend box, chart
title, and their sub-components (described in Section 2).
Specifically, it creates a bounding box around the chart ti-
tle, axes labels, plot area, axes ticks, and legend markers
and text. The extracted information from this module helps
in several downstream tasks, such as scaling the extracted
keypoints from pixel coordinates to the original coordinates
and legend mapping. This module is divided into two sub-
modules:

2We conduct a binary search to identify the optimal α value.



θ

Figure 5: Computing angular similarity error: Anchor
point, ground truth keypoint and predicted keypoint are de-
noted by Yellow, Green and Red color, respectively. Green
arrow is a vector that joins the anchor point and the ground
truth keypoint. The Blue arrow is a vector joining the
ground truth keypoint and the predicted keypoint. The an-
gle between these vectors is denoted by θ.

• Detection: We leverage the original DEtection TRans-
former (DETR) [5] implementation for predicting
bounding boxes around the chart components. DETR
is a recently-developed approach that applies the trans-
former encoder and decoder architecture to object de-
tection and achieves promising performance. To our
knowledge, this is the first adoption of the transformer
architecture for the problem of chart data extraction.
We use the original DETR transformer architecture
without making any changes to it, except for adapt-
ing its last layer for the following ten classes: (i) Chart
title, (ii) X-axis title, (iii) Y-axis title, (iv) Ticks, (v)
Plot area, (vi) Inner plot area, (vii) Legend box, (viii)
Legend marker, (ix) Legend label, and (x) Legend ele-
ment. We use a pretrained DETR model and finetune
it.

• Text Extraction: This sub-module generates chart ti-
tle, axes labels, and legend texts. We pass the input
chart through the EasyOCR [12] tool to read and locate
text. EasyOCR outputs the detected text and its cor-
responding bounding boxes, while the DETR model
outputs bounding boxes for each element class. We
classify and locate text in the chart by finding the in-
tersection between these bounding boxes. If EasyOCR
cannot detect text for a text box detected by DETR, we
report that box without any accompanying text.

4.3. Keypoint Grouping, Legend Mapping, and
Datapoint Scaling

This module performs three postprocessing tasks, key-
point grouping, legend mapping, and data scaling. We per-
form keypoint grouping and legend mapping jointly.

• Keypoint grouping and legend mapping: We adapt
concepts of image similarity to group keypoints and
map them to legend markers. We train the Deeprank-
ing model [24] by constructing triplets of the key-

D
ee

pr
an

ki
ng

D
ee

pr
an

ki
ng

D
atapoint em

bedding

Datapoint
patch

Legend marker

Legend em
bedding

Concat

M
LP Similarity

score

Figure 6: Keypoint grouping and legend mapping module.

point patch and its corresponding positive and negative
legend markers. The Deepranking model minimizes
hinge loss to group keypoint patches that belong to the
same legend marker and differentiate them from key-
point patches that belong to different legend markers.
We modify the last linear layer’s output size from 4096
to 100 to generate a 100-dimensional embedding vec-
tor. Next, we train a simple MLP model to predict the
similarity score between the embeddings of a keypoint
patch and a legend marker. Figure 6 describes the key-
point grouping and legend mapping module.
We have the keypoint coordinates and the legend
marker bounding boxes during the test phase. We sam-
ple 20×40 pixel patches around each detected key-
point and also resize legend marker bounding boxes
to 20×40 pixels. Let N be the number of detected leg-
end markers and M be the number of detected key-
points. We send each combination of the keypoint
patch and legend marker patch through the above MLP
model and obtain a similarity score. This way, we have
an N×M matrix of similarity scores between keypoint
patches and legend markers. Based on this N×M ma-
trix, we map each keypoint to a unique legend marker.
Points at the intersection of two more lines will ar-
bitrarily get mapped to one of the intersecting lines.
Every keypoint belonging to the legend marker gets
grouped as a detected line, and implicitly, legend map-
ping is also done.

• Datapoint Scaling: The keypoints extracted in Sec-
tion 4.1 are present in pixel coordinates. In order to
transform the pixel coordinates into their correspond-
ing raw data points, we perform a final step of data
scaling, which uses the OCR results and tick coordi-
nates obtained in Section 4.2. Algorithm 1 takes in the
predicted keypoints, the extracted tick values, and their
texts and outputs the scaled datapoint values. Note that
X-axis ticks and Y-axis ticks need to be run separately
through the algorithm as they may have different scal-
ing.



Algorithm 1 Datapoint Scaling

Given: list T (extracted tick values), list C (extracted
tick coordinates), list dps (unscaled datapoints)
r list← [] ▷ list of ratios corresponding to different
ticks pairs
for i in range(len(C)) do

for j in range(len(T )) do
r list.append(abs((T [j]−T [i])/(C[j]−C[i])))

end for
end for
Find median ratio (rmed) and its corresponding indices
(medidx) from coords
scaled← (dps− C[medidx]) ∗ rmed + T [medidx]

5. Experiments

5.1. Baselines

We list existing systems in Table 1. We only experiment
with ChartOCR [15]. ChartOCR is a state-of-the-art sys-
tem that combines a deep framework and rule-based meth-
ods for chart identification and data extraction. We use the
trained model available at the project’s Github repository3.
The other closer work, titled Linear Programming [14] can
not be compared due to the unavailability of source code4.

5.2. Datasets

We list chart information extraction datasets in Table 2.
Due to the unavailability or incomplete ground truth infor-
mation associated with several datasets, we only conducted
experiments on four datasets.

1. Adobe Synthetic [6]: The Adobe Synthetic lines test
set is used in evaluating the keypoint extraction and the
chart element detection modules. The test split com-
prises of 200 instances.

2. ExcelChart400k [15]: The ExcelChart400k train set
was used for training and evaluating the keypoint de-
tection module. The train, validation and test split
comprises of 116745, 3074 and 3072 instances, re-
spectively.

3. FigureSeer [19]: The FigureSeer test set was used in
evaluating the chart element detection module. The
test set comprises of 1000 instances.

4. Our Dataset: Our synthetic dataset was used in train-
ing and evaluating the keypoint extraction and the chart
element detection modules. The train, validation and
test split comprises of 400000, 10000 and 20000 in-
stances, respectively.

3https://github.com/soap117/DeepRule
4We requested authors, but due to confidentiality clause, the model and

the source code cannot be public.

5.3. Evaluation Metrics

Keypoint Extraction: We evaluate the keypoint extraction
module by matching predicted keypoints against the ground
truth keypoints. Here, we experiment with two variants of
similarity metrics both, based on Object Keypoint Similar-
ity score (OKS) [1]. Let P = [p1, p2, p3, ..., pM ] be M
predicted keypoints and let G = [g1, g2, g3, ..., gm] be m
ground truth keypoints. For each predicted keypoint pi,
we find the closest ground truth keypoint gj and the corre-
sponding euclidean distance di. Let the length of the chart
diagonal be s. Then, OKS for the predicted keypoint pi is
formally defined as:

OKS(pi) = exp (− di
2

2s2k2
) (3)

where k is a breathing zone for the predicted point to be
classified as ground truth keypoint [1]. We can assign k such
values that can enforce stricter bounds. The first similarity
metric variant is stricter than the second one. We describe
the two variants below:

• simstr: As the total number of predicted keypoints is
significantly higher than the number of ground truth
keypoints; we only match one predicted keypoint with
one ground truth keypoint. For strict bounds, we use
k = 0.025 [1]. We define γ as the threshold to com-
pare the OKS value of a predicted keypoint. We set
γ = 0.5. We assign a true positive label to a pi
if OKS(pi) > γ and the closest ground keypoint is
not already assigned to some other predicted keypoint.
The corresponding ground keypoint is marked as as-
signed if the assignment is successful.

• simrel: The predicted keypoint is given a second
chance to be labelled as a true positive in the relaxed
version. Here, we consider ground truth line segments
before assigning a false positive5 label to the predicted
keypoint. Let gk be the next point in the line in which
gj lies. We define an additional threshold β. A pre-
dicted keypoint is assigned as a true positive label af-
ter failing the first OKS threshold if the perpendicular
distance from pi to the line segment joining gj and gk
is less than β. Keeping β = 0.007 × s in the current
settings gave the best results.

We calculate recall, precision, and F1 score for each im-
age in the dataset using both the strict and relaxed versions.
The final metric scores are averaged over all the images in
the test dataset.

One major drawback of our model variants is predict-
ing 64 keypoints irrespective of the number of lines present
in the chart image. This can lead to low precision scores.
In order to improve precision, we deploy a background de-
tection algorithm. The algorithm detects if the predicted

5We consider all predicted keypoints as positive. Their assignment to
ground truth keypoints can be treated as True or False.



Algorithm 2 Background Detection
SecHists = CalculateColourHistograms(sections)
threshold = 0.98

for hist1 in SecHists do
for hist2 in SecHists do

val← CompareHist(hist1,hist2)

if val < threshold then
return False

end if
end for

end for
return True

keypoint is on or close to any line in the chart. Let pi be
a predicted keypoint, h and w be the height and width of
the image. We take a square patch P centred on pi with
a length of max(h,w) × 0.05. We further divide P into
nine equal smaller square sections. We compare image his-
tograms of the nine sections of the patch using OpenCV’s
compareHist function [2] with the co-relation method. If
the image histograms of all nine sections are extremely sim-
ilar, the predicted keypoint is likely not on or close to a line.
Algorithm 2 describes the background detection in detail.
Chart Element Detection Here, we measure the perfor-
mance of our second module (see Section 4.2 for more de-
tails). We use the standard mean Average Precision (mAP)
metric for measuring and comparing the performance of dif-
ferent systems. The mAP score is defined as the mean of the
Average Precision of each object class in the dataset. The
average precision of a class is the weighted mean of the
precision values for detecting a bounding box at each confi-
dence threshold. We use the public implementation [16] to
evaluate the chart element detection module.
Keypoint Grouping Here, we evaluate our third module
(see Section 4.3 for more details) which groups detected
keypoints into the lines. We use the modified definition of
F1 score [15] to measure keypoint grouping.
Legend Mapping Finally, we evaluate the last module of
the pipeline (see Section 4.3 for more details) that maps
each detected legend marker to a line that was grouped in
the previous step. We use the standard F1 score weighted
by the number of lines in each chart.

6. Results and Discussions
Keypoint Extraction Table 3 presents performance scores
for keypoint extraction. Among the three systems,
LINEEXD+A performed best. ChartOCR outperforms LI-
NEEX on ExcelChart400k dataset. However, it performs
poorly on other datasets. We attribute this behaviour to

its poor generalization ability (ChartOCR is trained using
ExcelChart400k dataset). Simple line charts, such as the
charts in the first row in Figure 7, having less number of
ground truth keypoints, results in lower precision for LI-
NEEX. However, complex line charts such as sine or co-
sine graphs (see second row in Figure 7), containing a large
number of keypoints yields high precision scores for LI-
NEEX. Empirically, we also find that ChartOCR performs
poorly on smooth lines. We validate this finding by con-
ducting an experiment on a 3000 chart images dataset [9].
Each chart comprises multiple smooth lines formed using
B-spline and cubic spline interpolated curves. The last three
columns in Table 3 validate our empirical finding.

Chart Element Detection Table 4 compares perfor-
mance scores for chart element detection. LINEEX per-
forms better than ChartOCR on the Adobe Synthetic dataset
and our dataset. Both systems perform comparably on the
FigureSeer dataset. In contrast to ChartOCR, LINEEX sup-
ports the detection of ticks and legend mapping elements
(markers and corresponding text). We note that it is diffi-
cult to achieve a high mAP score for elements like ticks,
legend markers, and legend text due to numerous of them
being present in a single chart.

Keypoint Grouping Table 5 compares the keypoint
grouping performance. Both systems showcase similar per-
formance. One of the reasons for poor performance on the
Adobe dataset is the existence of less popular symbols like
cross marks, stars, plus signs, and vertical lines in legend
markers. We do not evaluate on ExcelChart400K dataset
due to the unavailability of legend marker annotations.

Legend Mapping The F1 score for mapping predicted
lines to legend markers was obtained as 0.79.

Ablation Experiments We conduct two ablation exper-
iments. We replace the keypoint extraction transformer en-
coder in the first experiment with a Resnet50 encoder [11].
In contrast to the Resnet50 encoder, the transformer en-
coder based LINEEX variant performs 4X better (see Sup-
plementary). In the second experiment, we replace the
grouped predicted keypoints with the grouped ground-truth
keypoints for legend mapping. We achieve an F1 score of
0.87. This shows that errors introduced in keypoint extrac-
tion and grouping stage can lead to low mapping scores.

7. Conclusion

In this paper, we proposed LINEEX for extracting data
from scientific line charts using vision transformers. In the
future, the proposed work can be expanded into two possi-
ble directions: (i) extending to other chart types and (ii) pro-
posal of downstream usecases. The downstream usecases
require more precise extraction models, which could be an
interesting research direction to explore.



ExcelChart400K Adobe Synthetic Ours Smooth
Recall Prec F1 Recall Prec F1 Recall Prec F1 Recall Prec F1

simstr

ChartOCR 0.85 0.98 0.90 0.76 0.72 0.71 0.71 0.90 0.78 0.36 0.74 0.46
LINEEXD 0.82 0.69 0.70 0.91 0.54 0.64 0.83 0.75 0.76 0.70 0.49 0.56
LINEEXD+A 0.84 0.80 0.78 0.94 0.67 0.74 0.86 0.84 0.83 0.72 0.52 0.59

simrel

ChartOCR 0.85 0.98 0.90 0.78 0.80 0.76 0.74 0.97 0.83 0.38 0.78 0.49
LINEEXD 0.83 0.87 0.83 0.93 0.76 0.81 0.85 0.92 0.87 0.75 0.58 0.64
LINEEXD+A 0.85 0.90 0.85 0.93 0.81 0.84 0.87 0.94 0.89 0.77 0.61 0.67

Table 3: Keypoint extraction performance comparison between our proposed method and ChartOCR.

Dataset Model Legend
Box

Y-axis
Title

Chart
Title

X-axis
Title

Plot
Area

Inner Plot
Area

Ticks Legend
Marker

Legend
Label

Legend
Element

Our dataset ChartOCR 89.07 99.52 96.03 85.81 99.69 97.85 - - - -
LINEEX 99.97 83.84 100.0 100.0 100.0 99.97 85.55 82.39 82.71 83.74

Adobe Synthetic ChartOCR - 100.0 81.00 59.50 - 100.0 - - - -
LINEEX - 100.0 99.6 100.0 - 100.0 57.52 74.04 88.94 -

FigureSeer ChartOCR - 97.66 - 80.96 - 99.13 - - - -
LINEEX - 70.79 - 96.28 - 96.38 - 54.26 63.96 -

Table 4: Comparison of mAP scores between our proposed model and ChartOCR. As not all models detect all chart compo-
nents and not each dataset contain all of these chart components, we denote those cells by ‘-’.

Our model ChartOCR

Chart-1

Chart-3

Chart-2

Figure 7: Column 1: LINEEX output, Column 2: ChartOCR output.

Adobe Synthetic Our Dataset
ChartOCR 0.54 0.93
LINEEXD+A 0.54 0.93

Table 5: F1 scores for keypoint grouping task.

References
[1] Object keypoint similarity. https://cocodataset.

org/#keypoints-eval. Accessed: 2022-07-13.
[2] Opencv method for image histogram comparison.

https://docs.opencv.org/3.4/d8/dc8/
tutorial_histogram_comparison.html. Ac-
cessed: 2022-07-04.



[3] Alaaeldin Ali, Hugo Touvron, Mathilde Caron, Piotr Bo-
janowski, Matthijs Douze, Armand Joulin, Ivan Laptev, Na-
talia Neverova, Gabriel Synnaeve, Jakob Verbeek, et al. Xcit:
Cross-covariance image transformers. Advances in neural
information processing systems, 34, 2021.

[4] Abhijit Balaji, Thuvaarakkesh Ramanathan, and Venkatesh-
warlu Sonathi. Chart-text: A fully automated chart image
descriptor. arXiv preprint arXiv:1812.10636, 2018.

[5] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
end object detection with transformers. In European confer-
ence on computer vision, pages 213–229, 2020.

[6] Kenny Davila. Competition on harvesting raw tables
(chart) 2019 - pubmedcentral, 2019. ICDAR-CHART-2019-
PMC https://tc11.cvc.uab.es/datasets/
ICDAR-CHART-2019-PMC_1.

[7] Kenny Davila. Icpr 2020 competition on har-
vesting raw tables, 2020. ICPR2020-CHART-
Info https://tc11.cvc.uab.es/datasets/
ICPR2020-CHART-Info_1.

[8] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale. In International Conference on Learning Representa-
tions, 2021.

[9] Aalok Gangopadhyay, Prajwal Singh, and Shanmuganathan
Raman. Apex-net: Automatic plot extractor network, 2021.

[10] Jinglun Gao, Yin Zhou, and Kenneth E. Barner. View: Vi-
sual information extraction widget for improving chart im-
ages accessibility. In 19th IEEE International Conference
on Image Processing, pages 2865–2868, 2012.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[12] JaidedAI. Easyocr, 2022. version 1.4.2 https://
github.com/JaidedAI/EasyOCR.

[13] Daekyoung Jung, Wonjae Kim, Hyunjoo Song, Jeong-in
Hwang, Bongshin Lee, Bohyoung Kim, and Jinwook Seo.
Chartsense: Interactive data extraction from chart images. In
Proceedings of the 2017 CHI Conference on Human Factors
in Computing Systems, 2017.

[14] Hajime Kato, Mitsuru Nakazawa, Hsuan-Kung Yang, Mark
Chen, and Björn Stenger. Parsing line chart images using
linear programming. In 2022 IEEE/CVF Winter Conference

on Applications of Computer Vision (WACV), pages 2553–
2562, 2022.

[15] Junyu Luo, Zekun Li, Jinpeng Wang, and Chin-Yew Lin.
Chartocr: Data extraction from charts images via a deep hy-
brid framework. In 2021 IEEE Winter Conference on Appli-
cations of Computer Vision (WACV). The Computer Vision
Foundation, January 2021.

[16] Rafael Padilla, Wesley L. Passos, Thadeu L. B. Dias, Ser-
gio L. Netto, and Eduardo A. B. da Silva. A comparative
analysis of object detection metrics with a companion open-
source toolkit. Electronics, 10(3), 2021.

[17] Paschalis Panteleris and Antonis Argyros. Pe-former: Pose
estimation transformer. arXiv preprint arXiv:2112.04981,
2021.

[18] Manolis Savva, Nicholas Kong, Arti Chhajta, Li Fei-Fei,
Maneesh Agrawala, and Jeffrey Heer. Revision: Automated
classification, analysis and redesign of chart images. In Pro-
ceedings of the 24th Annual ACM Symposium on User Inter-
face Software and Technology, page 393–402, 2011.

[19] Noah Siegel, Zachary Horvitz, Roie Levin, Santosh Divvala,
and Ali Farhadi. Figureseer: Parsing result-figures in re-
search papers. ECCV, pages 664–680, 2016.

[20] Mayank Singh, Rajdeep Sarkar, Atharva Vyas, Pawan
Goyal, Animesh Mukherjee, and Soumen Chakrabarti. Au-
tomated early leaderboard generation from comparative ta-
bles. In European Conference on Information Retrieval,
pages 244–257. Springer, 2019.

[21] Sanjay Subramanian, Lucy Lu Wang, Ben Bogin, Sachin
Mehta, Madeleine van Zuylen, Sravanthi Parasa, Sameer
Singh, Matt Gardner, and Hannaneh Hajishirzi. Medicat: A
dataset of medical images, captions, and textual references.
In Findings of the Association for Computational Linguis-
tics: EMNLP 2020, pages 2112–2120, 2020.

[22] Kirill Sviatov, Nadezhda Yarushkina, and Sergey Sukhov.
Data extraction of charts with hybrid deep learning model.
In International Conference on Computational Science and
Its Applications, pages 382–393. Springer, 2021.

[23] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017.

[24] Jiang Wang, Yang Song, Thomas Leung, Chuck Rosenberg,
Jingbin Wang, James Philbin, Bo Chen, and Ying Wu. Learn-
ing fine-grained image similarity with deep ranking. In Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 1386–1393, 2014.


