
Annotation Framework for code-mixed Text Classification

Shivasankaran V P
IIT Gandhinagar

vp.shivasan@iitgn.ac.in

Abstract

As the NLP community is shifting gears to
solve problems associated with multilingual-
ism, we need robust annotation tools to handle
multilingual datasets efficiently. In this paper,
we present a code-mixed multilingual text anno-
tation framework, COMMENTATOR, specifi-
cally built for code-mixed text. In the current
version, we showcase its efficacy in token-level
and sentence-level language annotation tasks
for the Hinglish text (code-mixing of Hindi
and English). We compare COMMENTATOR
against a diverse set of five text annotation
tools.

1 Exisiting tools

COMMENTATOR tool was installed on Ubuntu
18.04.05 LTS system, see Fig 1. Installation/access
of the other five baseline tools can be seen in Fig 2.
The full sized screenshots can be found on GDrive1

2 Literature Review

The five baseline tools GATE (Cunningham,
2002), UBIAI (ubi), YEDDA (Yang et al., 2017),
MARKUP (Dobbie et al., 2021), Tagtog (Cejuela
et al., 2014) mentioned in the COMMENTATOR
paper bolster many modern Natural language pro-
cessing(NLP) tasks including text classification,
and they work in monolingual settings however
they have some challenges. For sentiment analy-
sis, none of the tools provides the annotator with
an option to highlight a particular part of the text,
which leads the annotator to the final label for the
whole text, and this could be crucial information
for machine learning models. GATE (Cunningham,
2002), even though it is very modular, the user
interface could be overwhelming for an average
user. It also has a very limited preset configura-
tion for NLP tasks. Since MARKUP gives active

1https://drive.google.
com/drive/folders/1ExcG34y_
ruDLW-2beUvNVuWALvAH5CxM?usp=sharing

suggestions using the active learning technique to
the annotator, there may arise a challenge when the
text is displayed in Devanagari script and the model
at the backend may not recognize the text, which
may create a problem while giving suggestions.

2.1 Other tools

There are ample of Commercial annotation tools
for monolingual text annotation tasks like Doccano
(Nakayama et al., 2018),Lighttag (Perry, 2021),IN-
CEpTION (Klie et al., 2018),brat (Stenetorp et al.,
2012),Prodigy (Pro), all of them support multiple
text annotation tasks and bolster a user friendly
interface. In contrast, annotation tools specifically
designed for code-mixed text classification are
limited (Garg and Sharma, 2020). Lighttag (Perry,
2021) supports a hierarchy of annotators for
quality control. brat (Stenetorp et al., 2012)
leverages a machine learning-based semantic class
disambiguation system to decrease the annotation
time by 15.4%. Doccano (Nakayama et al., 2018)
is an open-source annotation tool which not only
supports most of the text annotation tasks but also
supports certain multi-modal tasks like image
captioning and speech-to-text. INCEpTION (Klie
et al., 2018) like brat (Stenetorp et al., 2012) lever-
ages machine learning models to give suggestions
to annotators. Works like INCEpTION(Klie et al.,
2018), Prodigy (Pro) and (Al-Tamimi et al., 2021)
leverages active learning to get the annotations for
those texts, which will have maximum impact on a
machine learning model.

3 Implementation Plan

We have proposed multiple new features which can
be added to the commentator framework, at the
right side of the annotator panel, there would be
real-time suggestions displayed, this feature was in-
spired from MARKUP (Dobbie et al., 2021). Also
there would be an option for the annotator where

https://drive.google.com/drive/folders/1ExcG34y_ruDLW-2beUvNVuWALvAH5CxM?usp=sharing
https://drive.google.com/drive/folders/1ExcG34y_ruDLW-2beUvNVuWALvAH5CxM?usp=sharing
https://drive.google.com/drive/folders/1ExcG34y_ruDLW-2beUvNVuWALvAH5CxM?usp=sharing


Figure 1: Installation of the COMMENTATOR tool

Figure 2: Installation/access of YEDDA, MarkUp, TagTog, UBIAI, GATE in the order left to right and top to bottom



Tool Name User interface Image support In-text annotation Active Learning
YEDDA (Yang et al., 2017) Good ✗ ✗ ✗

MarkUp (Dobbie et al., 2021) Good ✗ ✓ ✓

TagTog (Cejuela et al., 2014) Good ✓ ✗ ✓

UBIAI (ubi) Good ✗ ✓ ✗

GATE (Cunningham, 2002) Bad ✗ ✗ ✗

Table 1: Comparison between different tools.

Figure 3: Proposed interface for annotator’s side

he can highlight phrases/words of the displayed
sentence which lead him to make his decision of
classifying the sentence. At the left side of the
panel, an admin can upload and select his own
pre-trained/fine-tuned language model. If the lan-
guage model is capable of handling all the scripts in
sentence then appropriate suggestions will be pro-
vided to the annotator. In case, the language model
is incapable of handling certain scripts which are
present in the sentence, we make use of LID tool
to differentiate between different scripts, and every
other word which the model is incapable of han-
dling and give annotation suggestions based only
on the text which the model can handle.

Below are the list of features that can be added
to the commentator framework with respect to text
classification tasks such as sentiment analysis are
as follows.

1. A feature where an annotator can highlight in-
text words/phrases which lead to his decision on
text. In this case, both full-text and in-text labels
will be displayed to the annotator. Specifically,
there would be five labels, three for full-text
(positive, neutral, and negative) and two for in-

text (positive, negative)
2. A feature where a model at the backend makes

suggestions by highlighting words/phrases to
the annotator. This can be both in-text and full-
text words/phrase highlights.

3. A feature where an admin can upload their own
pre-trained/fine-tuned models, which would be
responsible for making active suggestions dis-
played on the interface. At the annotator panel,
language model name would be displayed.

4. A feature where at the backend, if the text has
unrecognized script by the model which would
be detected by LID tools, then the model would
give suggestions based only on the recognized
script.

With the features listed above, for text classification
tasks such as sentiment analysis, the commenta-
tor framework would solve most of the challenges
faced in the existing tools to date.

4 System Description

The modified code can be found here https:
//github.com/Shiva-sankaran/
commentator

https://github.com/Shiva-sankaran/commentator
https://github.com/Shiva-sankaran/commentator
https://github.com/Shiva-sankaran/commentator


4.1 Frontend

A new page has been created for multilingual sen-
timent analysis task(/sentimental), which closely
resembles the LID home page(/) but with 4
tags(positive, negative, neutral, undefined). Fur-
ther, features are added to the admin page allowing
an administrator to upload custom sentiment files to
provide word-level sentiment suggestions. Lastly,
the administrator can also load a custom model to
give sentence-level sentiment suggestion through
a hosted huggingface2 model. Note that it is up to
the administrator to make sure that the huggingface
model URL given in admin page can handle mul-
tilingual texts. A sample URL to handle hinglish
sentences can be found here3.

When an annotator loads a sentence by default
the sentence-level and word-level suggestions will
be selected. The annotator can then modify the
word-level suggestions if necessary by toggling be-
tween the 4 possible tags or in the case of sentence-
level suggestion the annotator can select the most
appropriate sentiment.

4.2 Backend

In order to decrease the annotation time we pro-
vide both sentence-level and word-level sugges-
tions. The suggestions are calculated when an ad-
ministrator uploads a file for the annotators and
stored in the database. When an annotator later
loads a sentence for annotating the suggestions in
the database are gathered along with the sentence
and displayed to the annotator.

4.2.1 Sentence-level
A custom sentiment analysis model is loaded from
huggingface if the administrator had uploaded an
URL to a custom model. The code for obtaining
the inference results is made compatible with any
general classification model. If no custom model
is provided by the administrator then we by default
load(Khanuja et al., 2020) to provide suggestions.

4.2.2 Word-level
We process each word indivually to obtain word-
level suggestion. If custom word-sentiment files
have been uploaded by the administrator, we query
the word in the custom files and obtain word-level
suggestions. In the case of where no custom word-
sentiment files have been given by the administrator

2https://huggingface.co/
3https://huggingface.co/ganeshkharad/

gk-hinglish-sentiment

we fall back to the established methods of obtaining
word-level sentiment as follows.

• For words which belong to English we lever-
age the lexicon of VADER4 model in the
NLTK(nlt) package to provide word-level sug-
gestions.

• For the words which belong to Hinglish we
use the previous work(Yusuf et al., 2022)
to convert from Roman script to Devanagari
script. Further, we query the converted word
in the HindiWordNet(Narayan et al., 2002) for
the unique (ID,tag) pair. The (ID,tag) pair can
be used to query the sentiment of the word in
HindiWordSentiNet(Das and Bandyopadhyay,
2010).

4.3 Database
In order to store sentiment suggestions we create
a new collection ’sentiment’. Each entry in the
collection consists of the following.

t a g _ i d : ’ s e n t e n c e _ i d ’
s e n t e n c e _ t a g : ’ s e n t e n c e − l e v e l s e n t i m e n t tag ’
word_ tags : ’ word − l e v e l s e n t i m e n t t a g s ’

The ’sentiment’ collection is updated along with
the other collections when an administrator uploads
a file. The suggestions for the annotator are pro-
vided by querying the ’sentiment’ collection.

Collection name Details
lid LID Tokens

sentences Sentences to be annotated
users Admin and Annotator Accounts

sentiment Sentence and Word Suggestions

Table 2: Schema of the database

5 Contributions

This was done by one author.

6 Implemented System Images

• Refer to Fig 4 for implemented frontend fea-
tures

• Refer to Fig 5,6 for change in database after
an annotator submits

• Refer to Fig 7,8 for change in user interface
when database is manually modified

4https://www.nltk.org/_modules/nltk/
sentiment/vader.html

https://huggingface.co/
https://huggingface.co/ganeshkharad/gk-hinglish-sentiment
https://huggingface.co/ganeshkharad/gk-hinglish-sentiment
https://www.nltk.org/_modules/nltk/sentiment/vader.html
https://www.nltk.org/_modules/nltk/sentiment/vader.html


(a) Added Sentiment page to the front end

(b) Added features to upload word-sentiment files and model in the admin page

Figure 4: User interface



Figure 5: Annotator interface: Submitting annotation



(a) Users collection before annotation submission

(b) Users collection after annotation submission

Figure 6: Change in database w.r.t change in user interface



(a) sentiment collection before

(b) Manually changing sentiment collection through update command

Figure 7: Changing sentence tag from ’p’ to ’n’ in database manually



(a) User interface before manual database change

(b) User interface after manual database change

Figure 8: Change in user interface w.r.t change in database



References
nltk:natural language toolkit.

Prodigy · an annotation tool for ai, machine learning
nlp.

Ubiai: Easy to use text annotation tool.

Abdel-Karim Al-Tamimi, Esraa Bani-Isaa, and Ahmed
Al-Alami. 2021. Active learning for arabic text
classification. In 2021 International Conference on
Computational Intelligence and Knowledge Economy
(ICCIKE), pages 123–126. IEEE.

Juan Miguel Cejuela, Peter McQuilton, Laura Ponting,
Steven J Marygold, Raymund Stefancsik, Gillian H
Millburn, Burkhard Rost, FlyBase Consortium, et al.
2014. tagtog: interactive and text-mining-assisted
annotation of gene mentions in plos full-text articles.
Database, 2014.

Hamish Cunningham. 2002. Gate, a general
architecture for text engineering. Computers and the
Humanities, 36(2):223–254.

Amitava Das and Sivaji Bandyopadhyay. 2010.
Sentiwordnet for indian languages. In Proceedings of
the eighth workshop on Asian language resouces, pages
56–63.

Samuel Dobbie, Huw Strafford, W Owen Pickrell,
Beata Fonferko-Shadrach, Carys Jones, Ashley Akbari,
Simon Thompson, and Arron Lacey. 2021. Markup: a
web-based annotation tool powered by active learning.
Frontiers in Digital Health, 3.

N Garg and K Sharma. 2020. Annotated corpus
creation for sentiment analysis in code-mixed
hindi-english (hinglish) social network data. Indian
Journal of Science and Technology, 13(40):4216–4224.

Simran Khanuja, Sandipan Dandapat, Anirudh
Srinivasan, Sunayana Sitaram, and Monojit Choudhury.
2020. GLUECoS: An evaluation benchmark for
code-switched NLP.

Jan-Christoph Klie, Michael Bugert, Beto Boullosa,
Richard Eckart de Castilho, and Iryna Gurevych. 2018.
The inception platform: Machine-assisted and
knowledge-oriented interactive annotation. In
Proceedings of the 27th International Conference on
Computational Linguistics: System Demonstrations,
pages 5–9. Association for Computational Linguistics.
Event Title: The 27th International Conference on
Computational Linguistics (COLING 2018).

Hiroki Nakayama, Takahiro Kubo, Junya Kamura,
Yasufumi Taniguchi, and Xu Liang. 2018. doccano:
Text annotation tool for human. Software available
from https://github.com/doccano/doccano.

Dipak Narayan, Debasri Chakrabarti, Prabhakar Pande,
and Pushpak Bhattacharyya. 2002. An experience in
building the indo wordnet-a wordnet for hindi. In First
international conference on global WordNet, Mysore,
India, volume 24.

Tal Perry. 2021. LightTag: Text annotation platform.
In Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 20–27, Online and Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Pontus Stenetorp, Sampo Pyysalo, Goran Topić,
Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsujii.
2012. brat: a web-based tool for NLP-assisted text
annotation. In Proceedings of the Demonstrations
Session at EACL 2012, Avignon, France. Association
for Computational Linguistics.

Jie Yang, Yue Zhang, Linwei Li, and Xingxuan Li.
2017. Yedda: A lightweight collaborative text span
annotation tool. arXiv preprint arXiv:1711.03759.

Mirza Yusuf, Praatibh Surana, and Chethan sharma.
2022. Hindiwsd: A package for word sense
disambiguation in hinglish & hindi. In Proceedings of
The WILDRE-6 Workshop within the 13th Language
Resources and Evaluation Conference, pages 18–23,
Marseille, France. European Language Resources
Association.

https://www.nltk.org/
https://prodi.gy/
https://prodi.gy/
https://ubiai.tools/
https://www.aclweb.org/anthology/2020.acl-main.329
https://www.aclweb.org/anthology/2020.acl-main.329
http://tubiblio.ulb.tu-darmstadt.de/106270/
http://tubiblio.ulb.tu-darmstadt.de/106270/
https://github.com/doccano/doccano
https://github.com/doccano/doccano
https://aclanthology.org/2021.emnlp-demo.3
https://aclanthology.org/2022.wildre6-1.4
https://aclanthology.org/2022.wildre6-1.4

