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Abstract

Identifying intents from dialogue utterances
forms an integral component of task-oriented
dialogue systems. Intent-related tasks are typi-
cally formulated either as a classification task,
where the utterances are classified into prede-
fined categories or as a clustering task when
new and previously unknown intent categories
need to be discovered from these utterances.
Further, the intent classification may be mod-
eled in a multiclass (MC) or multilabel (ML)
setup. While typically these tasks are mod-
eled as separate tasks, we propose INTENDD a
unified approach leveraging a shared utterance
encoding backbone. INTENDD uses an en-
tirely unsupervised contrastive learning strat-
egy for representation learning, where pseudo-
labels for the unlabeled utterances are gener-
ated based on their lexical features. Addition-
ally, we introduce a two-step post-processing
setup for the classification tasks using modi-
fied adsorption. Here, first, the residuals in
the training data are propagated followed by
smoothing the labels both modeled in a trans-
ductive setting. Through extensive evaluations
on various benchmark datasets, we find that our
approach consistently outperforms competitive
baselines across all three tasks. On average,
INTENDD reports percentage improvements of
2.32 %, 1.26 %, and 1.52 % in their respective
metrics for few-shot MC, few-shot ML, and the
intent discovery tasks respectively.

1 Introduction

Intents form a core natural language understand-
ing component in task-oriented dialogue (ToD)
systems. Intent detection and discovery not only
have immense utility but are also challenging due
to numerous factors. Intent classes vary vastly
from one use case to another, and often arise out
of business needs specific to a particular prod-
uct or organization. Further, modeling require-
ments might necessitate considering fine-grained
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and semantically-similar concepts as separate in-
tents (Zhang et al., 2021c). Overall, intent-related
tasks typically are expected to be scalable and re-
source efficient, to quickly bootstrap to new tasks
and domains; lightweight and modular for main-
tainability across domains and expressive to handle
large, related often overlapping intent scenarios
(Vulić et al., 2022; Zhang et al., 2021a).

INTENDD proposes a unified framework for in-
tent detection and discovery from dialogue utter-
ances from ToD systems. The framework enables
the modeling of various intent-related tasks such
as intent classification, both multiclass and multil-
abel, as well as intent discovery, both unsupervised
and semi-supervised. In Intent detection (classifica-
tion), we expect every class to have a few labeled
instances, say 5 or 10. However, in intent discov-
ery, not all classes are expected to have labeled
instances and may even be completely unlabeled.

Recently, intent-related models focus more on
contrastive representation learning, owing to the
limited availability of labeled data and the pres-
ence of semantically similar and fine-grained label
space(Kumar et al., 2022; Zhang et al., 2021c).
Similarly, a common utterance encoder forms the
backbone of INTENDD, irrespective of the task.
The utterance encoder is learned by updating the
parameters of a general-purpose pre-trained en-
coder using a two-step contrastive representation
learning process. First, we adapt a general-purpose
pre-trained encoder by using unlabelled informa-
tion from various publicly available intent datasets.
Second, we update the parameters of the encoder
using utterances from the target dataset, on which
the task needs to be performed, making the encoder
specialize on the corpus. Here, we use both labeled
and unlabelled utterances from the target dataset,
where pseudo labels are assigned to the latter.

For intent classification, both multiclass and mul-
tilabel, INTENDD consists of a three-step pipeline.
It includes training a classifier that uses the rep-



resentation from the encoder as its feature repre-
sentation, followed by two post-processing steps
in a transductive setting. Specifically, a multilayer
perceptron-based classifier is trained by stacking
it on top of the utterance representation from our
encoder. The post-processing steps consider the tar-
get corpus as a graph in a transductive setting. The
first postprocessing step involves propagating the
residual errors in the training data to the neighbors.
The second one further performs label smoothing
by propagating the labels obtained from the pre-
vious step. Both these steps are performed using
Modified Adsorption, an iterative algorithm that
enables controlling the propagation of information
that passes through a node more tightly (Talukdar
and Pereira, 2010).

Major contributions: INTENDD reports perfor-
mance improvements compared to that of competi-
tive baselines in all the tasks and settings we exper-
imented with, including multiclass and multilabel
classification in few-shot and high data settings;
unsupervised and semi-supervised intent discov-
ery. Our two-step post-processing setup for intent
classification leads to statistically significant perfor-
mance improvements to our base model. While ex-
isting intent models focus primarily on better repre-
sentation learning and data augmentation, we show
that classical transductive learning approaches can
help improve the performance of intent models
even in fully supervised settings. Finally, we show
that with a careful construction of a graph struc-
ture in a transductive learning setting in terms of
both edge formation and edge weight formation
can further improve our outcomes.

2 INTENDD

INTENDD consists of a two-step representation
learning module, a classification module, and an
intent detection module. We elaborate on each of
these modules in this section.

2.1 Continued Pretraining
We start with a general-purpose pre-trained model
and use it as a cross-encoder for the continued
pretraining (Gururangan et al., 2020). We start
with a standard general-purpose pre-trained model
as the encoder. We follow Zhang et al. (2021c) for
our pretraining phase where the model parameters
are updated both using a combination of token-level
masked language modeling loss and a sentence-
level self-supervised contrastive loss. For a batch

of K sentences, we compute the contrastive loss
(Wu et al., 2020; Liu et al., 2021) as follows

Lsscl = − 1

K

K∑
i=1

log
exp(sim(hi, h̄i)/τ)∑K
j=1 exp(sim(hi, h̄j)/τ)

(1)
For a sentence xi, we obtain a masked version

of the sentence x̄i, where a few tokens of xi are
randomly masked. Further, we dynamically mask
tokens such that each sentence has different masked
positions across different training epochs. In Lsscl,
hi is the representation of the sentence xi and h̄i
is the representation of the x̄i. τ is the tempera-
ture parameter that controls the penalty to negative
samples and sim(., .) denotes the cosine similarity
between two vectors. The final loss Lpretraining is
computed as Lpretraining = Lsscl + λLmlm. Here,
Lmlm is token level masked language modelling
loss and λ is a weight hyper-parameter.

2.2 Corpus-specialized Representation
Learning

The pretraining step uses unlabelled sentences from
publicly available intent datasets which should ide-
ally expose a pre-trained language model with utter-
ances in the domain. Now, we consider contrastive
representation learning using the target dataset on
which the task needs to be performed.

Consider a dataset D with a total of N unla-
belled input utterances. Here, assuming D to be
completely unlabeled, we first assign pseudo labels
to each of the utterances in D. Using the pseudo
labels, we learn corpus-level contrastive represen-
tation by using supervised contrastive loss (Khosla
et al., 2020). The pseudo labels are assigned by first
finding clusters of utterances by using a commu-
nity detection algorithm, ‘Louvain’ (Blondel et al.,
2008). Community detection assumes the construc-
tion of a graph structure. We form a connected
weighted directed graph GD(VD, E,W ), the input
utterances in D form the nodes in GD. We identify
lexical features in the form of word-level n-grams.

We identify keyphrases that are representative of
the target corpus on which the representation learn-
ing is performed. The keyphrases are obtained by
finding word-level n-grams that have a high as-
sociation with the target corpus, as compared to
the likelihood of finding those in other arbitrary
corpora. Here, we obtain the pointwise mutual in-
formation (PMI) of the n-grams in the target corpus,
based on the likelihood of the n-gram occurring in



the corpus, compared to a set of utterances formed
via the union of the sentences in the target cor-
pus and that in the corpora used during pretraining
setup. Let P be the union of all the sentences in
the corpora used in the pretraining step. Now, the
PMI is calculated as

PMI(kp,D) = log df(kp,P ∪ D)×

log
df(kp,D)|P ∪ D|
df(kp,P ∪ D)|D|

(2)

Here, df(kp,D) is the count of utterances in D
that contain the keyphrase kp. df(kp, |P ∪ D|) is
the frequency of the keyphrase from the combined
collection D and P . Here, we only consider those
keyphrases which is present at least five times in
D. Moreover, the log frequency of the count of
the keyphrase is also multiplied with PMI to avoid
high scores for rare words (Jin et al., 2022). Further,
the PMI value is multiplied by the square of the
number of the words in the ngram so as to have
higher scores for ngrams with larger values of n
(Banerjee and Pedersen, 2002). We validated this
decision during preliminary experiments where we
found that multiplying PMI with the square of the
number of words generally worked better for the
datasets considered in this work. That said, it’s
important to note that this design choice may vary
in its necessity when applied to a different dataset,
and its requirement should be established through
empirical investigation.

Now, the keyphrases are used to construct GD.
Two nodes have edges between them if they both
have at least one common keyphrase. The edge
weights are the sum of the keyphrase scores com-
mon between two nodes. The weight matrix W is
a N ×N matrix representing the edge weights in
the graph. W is row-normalized using min-max
normalization, a form of feature scaling. The graph
GD is then used to perform community detection
using Louvain, a modularity-based community de-
tection algorithm. Community membership is used
to form clusters of inputs. Here, all the nodes in
GD that belong to the same cluster are assigned
with a common (pseudo)-label.

Louvain Method: is a modularity-based graph
partitioning approach for detecting hierarchical
community structure (Blondel et al., 2008). Here,
each utterance is considered a node in a graph and
the edge weights capture the strength of the rela-
tion between node pairs. Louvain Method attempts

to iteratively maximize the quality function it opti-
mizes, generally modularity. While the approach
may be started with any arbitrary partitioning of
the graph, we start with each data point belonging
to its own community (singleton communities). It
then works iteratively in two phases. In the first
phase, the algorithm tries to assign the nodes to
their neighbors’ community as long as that reas-
signment leads to a gain in the modularity value.
The second phase then aggregates the nodes within
a community and forms a super node, thus creat-
ing a new graph where each community in the first
phase becomes a node in the second phase. The
process iteratively continues until the modularity
value can no longer be improved.

Until now, we were assuming GD to be com-
pletely unlabeled. However, we are yet to discuss
two crucial questions. One, how to incorporate
labeled information for an available subset of utter-
ances in a semi-supervised setup. Here, we need
to ensure that nodes belonging to the same true la-
bel should not get partitioned into separate clusters.
We merge those inputs with the same true label as
a single node before constructing GD, and initial-
ize Louvain with the graph structure so obtained.
The merging of the utterances with a common la-
bel into a single node trivially ensures that no two
utterances of the same label get partitioned into
different clusters. Hence, we ensure that no two
nodes with the same true label are assigned with
different pseudo labels. However, at this stage, the
pseudo-labels are obtained purely for representa-
tion learning. It is not intended to be representative
of the real intent classes but is rather simply a par-
tition based on the keyphrases in the utterances.
Finally, Using the pseudo labels obtained via Lou-
vain, we learn corpus-level contrastive representa-
tion by using supervised contrastive loss (Khosla
et al., 2020). Here, during the representation learn-
ing each utterance is treated separately and we do
not consider the merging that we performed for the
community detection.

Keyphrase selection for constructing GD:
While we have a list of n-grams, along with their
feature scores. Here, we employ recursive feature
elimination (RFE), a greedy feature elimination ap-
proach as our feature selection strategy. In RFE
we start with a large set of features and greedily
eliminate features, one at a time. We start with the
top k features and perform the community detec-
tion using Louvain. We then start with the least



promising feature from our selected features and
check if removing the feature leads to an increase
in the overall modularity of the graph, as com-
pared to the modularity when the feature was in-
cluded. Here, the number of nodes in GD remain
the same, though the number of edges and their
edge weights are dependent on the features. A sin-
gle run of the Louvain algorithm has a complexity
of O(n.logn), where n is the number of nodes. So
in worst case, the time complexity for graph con-
struction is O(n.d.logn), where d is the number
of features. We perform the feature selection for
a few fixed iterations. We incorporate some addi-
tional constraints to keep track of for the feature
selection, which are as follows: The graph needs to
remain a single connected graph and if the removal
of a feature violates it, then we keep the feature.
Second, in all the tasks we consider, we assume the
knowledge of the total number of intents. Hence
a feature, whose presence, even if contributes pos-
itively to modularity but results in increasing the
gap between the total number of true intent classes
and the number of clusters Louvain provides with it
as the feature, then the feature is removed as well.

2.3 Intent Discovery

We perform intent discovery in both unsupervised
and semi-supervised setups. Intent discovery is
performed via clustering. Here, we start with the
same graph construction as was used for Louvain
in §2.2. The weight matrix W is row-normalized.
Additionally, we obtain a similarity matrix A based
on the cosine similarity between the utterance level
encodings of two nodes. The encodings are ob-
tained from the encoder learned in §2.2. We obtain
a weighted average of the edge weights in W and
A. Specifically, the weights for the average is ob-
tained via grid search and selects the configuration
that optimizes the silhouette score, an intrinsic mea-
sure for clustering quality. The new graph will be
referred to as Gpred. With Gpred, we perform Lou-
vain again for intent discovery. The labeled nodes
in a semi-supervised setup would be merged as a
single node before running Louvain. When a new
set of utterances arrive, these utterances are added
as nodes in Gpred. Their corresponding values in A
are obtained based on their representation obtained
from our encoder (§2.2). The corresponding val-
ues in W are obtained based on the existing set of
ngrams and no new feature selection is performed.

2.4 Intent Classification
Irrespective of whether multiclass or multilabel
setup, our base classifier is a multilayer percep-
tron comprising of a single hidden layer with non-
linearity. It uses the utterance level representation,
learned in §2.1 and §2.2, as its input feature, which
remains frozen during the training of the classifier.
The classifier is trained using cross-entropy loss
with label smoothing (Vulić et al., 2022; Zhang
et al., 2021c). The activation function at the output
layer is set to softmax and sigmoid for multiclass
and multilabel classification respectively.

Modified Adsorption (MAD) is a graph-based
semi-supervised transductive learning approach
(Talukdar and Crammer, 2009). MAD is a vari-
ant of the label propagation approach. While label
propagation (Zhu et al., 2003) forces the unlabeled
instances to agree with their neighboring labeled
instances, MAD enables prediction on labeled in-
stances to vary and incorporates node uncertainty
(Yang et al., 2016). It is expressed as an uncon-
strained optimization problem and solved using an
iterative algorithm that guarantees convergence to
a local optima (Talukdar and Pereira, 2010; Sun
et al., 2016). The graph typically contains a few
labeled nodes, referred to as seed nodes, and a large
set of unlabelled nodes. The graph structure can be
explicitly designed in MAD. The unlabelled nodes
are typically assigned a dummy label. In MAD, a
node actually is assigned a label distribution than a
hard assignment of a label.

From a random walk perspective, it can be seen
as a controlled random walk with three possible ac-
tions, each with predefined probabilities, all adding
to one (Kirchhoff and Alexandrescu, 2011). The
three actions involve a) continuing a random walk
to the neighbors of a node based on the transition
matrix probability, b) stopping and returning the la-
bel distribution for the node, and c) abandoning and
returning an all-zero distribution or a high probabil-
ity to the dummy label. Each of these components
forms part of the MAD objective in the form of
seed label loss, smoothness loss across edges, and
the label prior loss. The objective is:

argmin
Ŷ

K+1∑
l=1

[∥∥∥SŶl − SYl

∥∥∥2+
µ1

∑
i,j

Mij(Ŷil − Ŷjl)
2 + µ2

∥∥∥Ŷl −Rl

∥∥∥2]



Here M is the symmetrized weight matrix, Yjl

is the initial weight assignment or the seed weight
for label l on node j, Ŷjl is the updated weight
of the label l on node j. S is diagonal matrix in-
dicating seed nodes, and Rjl is the regularization
target for label l on node j. Here, we are assuming
a classification task with K labels, and MAD intro-
duces a dummy label as an initial assignment for
the unlabeled nodes.

We follow Huang et al. (2021) and perform
two post-processing steps. While the original ap-
proach use label spreading (Zhou et al., 2003) for
both steps, we replace it with MAD. Moreover,
our graphs are constructed by a combination of
embedding-based similarity and n-gram based sim-
ilarity as described in §2.3, i.e. Gpred. Both the
postprocessing steps are applied on the same graph
structure. However, the seed label initializations
differ in both settings.

Propagation of Residual Errors: We obtain the
predictions from the base predictor, where each
prediction is a distribution over the labels. Using
the predictions, we compute the residual errors for
the training nodes and propagate the residual errors
through the edges of the graph. The unlabelled and
validation nodes are initialized with a zero value (or
a dummy value), and the seed nodes are initialized
with their residuals. Essentially Y is initialized
with a non-zero error for the training nodes with
a non-zero residual error. With this initialization
of Y we apply MAD on GMAD. The key assump-
tion here is that the errors in the base prediction
are positively correlated with the similarity neigh-
borhood in the graph and hence the residuals need
to be propagated (Huang et al., 2021). Here, the
residuals are propagated. Hence at the end of the
propagation, each node has the smoothed errors as
a distribution over the labels. To get the predictions
after this step, the smoothed errors are added to
predictions from the base predictor for each node.

Smoothing Label Distribution The last step in
our classification pipeline involves a smoothing
step. Here, we make the fundamental assumption
of homophily, where adjacent nodes tend to have
similar labels. Here, Y is initialized as follows:
Seed labels are provided with their ground truth la-
bels, the validation nodes and the unlabelled nodes
are provided with initialized with the predictions
after the error propagation step. With this initializa-
tion, we perform MAD over GMAD. In multiclass

classification, the label with the maximum value
for each node is predicted as the final class. In
multilabel classification, all the labels with a score
above a threshold are predicted as the final labels.

3 Experimental Setup

We perform experiments for the three intent re-
lated tasks - Intent Discovery, Multiclass Intent
Detection, and Multi-label Intent Detection. Here,
we provide training and modeling details that are
common to all three tasks and then mention task-
specific details such as the baselines and evaluation
metrics at appropriate sections.

Pretraining Datasets. One feature of IN-
TENDD is the unification of these three tasks
via a common pretrained transformer backbone.
This common pretraining step is performed
on CLINC-150 (Larson et al., 2019), BANK-
ING77 (Casanueva et al., 2020), HWU64 (Liu
et al., 2019a), NLU++ (Casanueva et al., 2022), and
StackOverflow (Xu et al., 2015). Following prior
work on contrastive learning for intent detection
by Zhang et al. (2021c), we additionally include
TOP (Gupta et al., 2018), SNIP (Coucke et al.,
2018), and ATIS (Tür et al., 2010). Table 4 shows
some of the relevant statistics for the datasets.

Training and Modeling Details. We choose
RoBERTa (Liu et al., 2019b) with the base con-
figuration as our common encoding backbone and
pretrain with aforementioned datasets. For encod-
ing the input utterances, we use a cross-encoder
architecture as detailed by (Mesgar et al., 2023). In
this setup, the joint embedding for any pair of ut-
terances (p, q) –needed for contrastive learning for
instance– is obtained by embedding it as “[CLS]
p [SEP] q” and the [CLS] representation is used
as the representation for that pair. Mesgar et al.
(2023) found that a cross-encoder approach works
much better than a Bi-encoder where any pair of
utterances are independently embedded.

We perform all of our experiments using the
tranformers library (Wolf et al., 2020) and the
pytorch framework (Paszke et al., 2019). We
train our models using the AdamW optimizer with
learning rate set to 2e-5, warmup rate of 0.1, and
weight decay of 0.01. We pretrain our model for
15 epochs, and thereafter perform task-specific
training for another 20 epochs. All experiments
are performed on a machine with NVIDIA A100
80GB and we choose the maximum batch size that



fits the GPU memory (= 96). We perform hy-
peraparameter search for the temperature τ and
lambda λ over the ranges τ ∈ {0.1, 0.3, 0.5}, and
λ ∈ {0.01, 0.03, 0.05}.

4 Experiments and Results

4.1 Intent Discovery
Datasets. We use three datasets for benchmark-
ing INTENDD for Intent Discovery, namely,
BANKING77, CLINC-150, and Stack Overflow.
We assess the effectiveness of our proposed ID sys-
tem in two practical scenarios: unsupervised ID
and semi-supervised ID. To ensure clarity, we in-
troduce the term Known Intent Ratio (KIR), which
represents the ratio of known intents in the train-
ing data: the number of known intent categories
(|Ik|) divided by the sum of the known intent cate-
gories and unknown categories (|Ik|+ |Iu|). In this
context, a value of |Ik| = 0 corresponds to unsu-
pervised ID, indicating the absence of any known
intent classes. For semi-supervised ID, we adopt
the approach outlined in previous works (Kumar
et al., 2022; Zhang et al., 2021b), conducting exper-
iments using three KIR values: {25%, 50%, 75%}.

Evaluation Metrics. Following previous
work (Zhang et al., 2021b), we report three metrics,
namely Clustering Accuracy (ACC) (Yang
et al., 2010), Normalized Mutual Information
(NMI) (Strehl and Ghosh, 2002), Adjusted Rand
Index (ARI) (Hubert and Arabie, 1985). All
metrics range between 0 and 100 and larger values
are more desirable.

Baselines. We follow the recent work of Kumar
et al. (2022) to select suitable baselines for unsu-
pervised and semi-supervised scenarios. Due to
space constraints, we detail these in the appendix.

Results. We report all the intent discovery results
in table 1. To begin with, it is important to highlight
that our proposed method INTENDD consistently
demonstrates superior performance surpassing all
baseline techniques in both unsupervised and semi-
supervised settings across all three datasets. Specif-
ically, in an entirely unsupervised scenario, SBERT-
KM emerges as the most formidable baseline,
yet our approach significantly outperforms it. It
should be noted that the fundamental distinction
between INTENDD and SBERT-KM lies in our
graph construction strategy for clustering. Our
strategy relies on a combination of semantic simi-
larity (via embeddings) and n-gram based similarity

(via keyphrases), underscoring the importance of
incorporating both these similarity measures.

Furthermore, while our approach demonstrates
notable enhancements across all configurations,
these improvements are particularly pronounced
when the amount of labeled data is limited, result-
ing in an average increase of nearly 3% in accuracy
for KIR values of 0% and 25%.

4.2 Multiclass Intent Detection
Datasets and Evaluation Metric. Following
Zhang et al. (2021c), we perform few-shot in-
tent detection and select three challenging datasets
for our experiments, namely, CLINC-150, BANK-
ING77, and HWU64. We use the same training
and test splits as specified in that paper, and use
detection accuracy as our evaluation metric.

Baselines. Due to space constraints, we provide
detailed description of all baselines in the ap-
pendix (please refer §A.1). We use the following
baselines: RoBERTa-base (Zhang et al., 2020),
CONVBERT (Mehri et al., 2020), CONVBERT +
Combined Mehri and Eric (2021), (Zhang et al.,
2020), and CPFT (Zhang et al., 2021c, Contrastive
Pre-training and Fine-Tuning). CPFT is the cur-
rent state-of-the-art employing self-supervised con-
trastive pre-training on multiple intent detection
datasets, followed by fine-tuning using supervised
contrastive learning.

Results. Table 2 shows the results of our exper-
iments for multiclass intent detection. Our pro-
posal, INTENDD demonstrates superior perfor-
mance across all three setups when compared to the
baseline models in the 5-shot, 10-shot, and full data
scenarios. In the 5-shot setting, exhibits an average
absolute improvement of 2.47%, with the highest
absolute improvement of 4.31% observed in the
BANKING77 dataset. Across all the datasets, IN-
TENDD achieves average absolute improvements
of 1.31% and 0.71% in the 10-shot and full data
settings, respectively.

INTENDD currently does not incorporate any
augmented data in its experimental setup. We
do not compare our work with data augmenta-
tion methods as they are orthogonal to ours. One
such example is that of ICDA (Lin et al., 2023),
where a large language model (OPT-66B) (Zhang
et al., 2022) is used to augment the intent detection
datasets for few-shot data settings. Nevertheless,
we find that our method performs better than ICDA.
We mention this comparison in the appendix B.1.



Method
CLINC BANKING STACK OVERFLOW

ACC NMI ARI ACC NMI ARI ACC NMI ARI

Unsupervised

BERT-KM 45.06 70.89 26.86 29.55 54.57 12.18 13.85 11.60 1.60
DAC 55.94 78.40 40.49 27.41 47.35 14.24 16.30 14.71 2.76
DCN 49.29 75.66 31.15 41.99 67.54 26.81 57.09 61.34 34.98
DEC 46.89 74.83 27.46 41.29 67.78 27.21 57.09 61.32 21.17
SAE-KM 46.75 73.13 29.95 38.92 63.79 22.85 37.16 48.72 23.36
SBERT-KM 61.04 82.22 48.56 55.72 74.68 42.77 - - -
INTENDD (Ours) 63.87 83.12 51.76 58.74 75.91 47.88 79.32 73.88 62.49

KIR = 25%

CDAC+ 64.64 84.25 50.35 48.71 69.78 35.09 74.30 74.33 39.44
DeepAligned 73.71 88.71 64.27 48.88 70.45 36.81 69.66 70.23 53.69
DSSCCBERT 75.72 89.12 66.72 55.52 72.73 42.11 - - -
DSSCCSBERT 80.36 91.43 72.83 64.93 80.17 53.60 81.72 76.57 68.00
INTENDD (Ours) 83.11 92.32 76.31 67.50 76.79 57.85 84.82 78.93 71.64

KIR = 50%

CDAC+ 69.02 86.18 54.15 53.34 71.53 40.42 76.30 76.18 41.92
DeepAligned 80.22 91.63 72.34 59.23 76.52 47.82 72.89 74.49 57.96
DSSCCBERT 81.46 91.39 73.48 63.08 77.60 50.64 - - -
DSSCCSBERT 83.49 92.78 76.80 69.38 82.68 58.95 82.43 77.30 68.94
INTENDD (Ours) 84.57 93.91 78.42 71.16 84.56 63.17 85.01 79.14 72.49

KIR = 75%

CDAC+ 69.89 86.65 54.33 53.83 72.25 40.97 75.34 76.68 43.97
DeepAligned 86.01 94.03 79.82 64.90 79.56 53.64 74.51 76.24 59.45
DSSCCBERT 87.91 93.87 81.09 69.82 81.24 58.09 - - -
DSSCCSBERT 88.47 94.50 82.40 75.15 85.04 64.83 82.65 77.08 68.67
INTENDD (Ours) 90.99 96.29 83.62 77.08 87.39 68.69 85.47 77.12 72.90

Table 1: Results for Intent Discovery. First set of results are in a completely unsupervised setting, while others
are when some of the intent categories are known. KIR is used to represent the Known Intent Ratio. In all the
experiments involving known intents classes, we assume the proportion of labeled examples to be 10% (Kumar
et al., 2022). Baseline results are taken from Kumar et al. (2022) and those marked with - have not been reported in
literature. DSSCC paper does not report results for DSSCCBERT on Stack Overflow, and we could not get access
their code to independently run that model. The best results for each dataset and setting are marked in bold. We
note that our proposed method consistently outperform recent baselines by a significant margin.

Method BANKING77 HWU64 CLINC150

5 10 Full 5 10 Full 5 10 Full

RoBERTa 74.65 84.67 93.08 76.75 83.42 90.97 88.27 91.21 96.46
CONVBERT - 83.63 92.95 - 83.77 90.43 - 92.10 97.07
+ MLM - 83.99 93.44 - 84.52 92.38 - 92.75 97.11
+ MLM + Example - 84.09 94.06 - 83.44 92.47 - 92.35 97.11
+ Combined - 85.95 93.83 - 86.28 93.03 - 97.97 97.31
DNNC 80.40 86.71 - 80.46 84.72 - 91.02 93.76 -
CPFT 80.86 87.20 - 82.03 87.13 - 92.34 94.18 -
INTENDD-MLP (Ours) 82.17 88.70 93.63 81.27 85.32 92.89 91.34 93.66 96.92
INTENDD-EP (Ours) 83.25 88.96 94.18 83.17 86.35 93.31 92.70 92.24 97.93
INTENDD (Ours) 85.34 89.62 94.86 84.11 88.37 93.64 93.52 94.71 98.03

Table 2: Results for Multiclass Intent Detection. We report intent detection accuracy for three data settings. We
use the baseline numbers from (Lin et al., 2023). The best results for each dataset and setting are marked in bold.

Is Modified Adsorption important for Intent
Detection? INTENDD uses a pipeline of three

classification setups: one using the MLP, and two
in a transductive setting using the Modified Ad-



sorption (MAD). We perform ablation experiments
with these components and report results in the ta-
ble 2. We report results from three systems by
progressively adding one component at a time. IN-
TENDD-MLP denotes the results without using the
two steps of Modified Adsorption, INTENDD-EP
denotes the results with MAD but only the residual
propagation step (i.e. without the label smoothing).
We observe consistent performance improvements
due to each of the components of the pipeline. No-
tably, the label propagation step leads to more sig-
nificant improvements and these gains are not only
observed in the few-shot setups but also in the fully
data scenarios.

4.3 Multilabel Intent Detection

Datasets and Evaluation Metric. Follow-
ing Vulić et al. (2022), we use three datasets for
multilabel intent detection: BANKING77, Mix-
ATIS, and HOTELS subset is taken from NLU++
benchmark. MixATIS consists of a multilabel
dataset synthetically obtained via concatenating
single-label instances from the ATIS dataset. We
do not perform experiments with InsuranceFAQ
from that paper since it was an internal data.
We report standard evaluation metrics: F1 and
exact match accuracy (Acc). We report results
on all datasets in two settings: low-data, and
the high-data regimes, again replicating the
experimental settings from Vulić et al. (2022).

Baselines. Our main baseline is the MultiCon-
vFiT model proposed by Vulić et al. (2022) with
two variants. MultiConvFiT (FT) where full fine-
tuning along with the updating encoder parameters
is performed. The second, more efficient alterna-
tive MultiConvFiT (Ad) where an adapter is used
instead of updating all parameters. Along with this,
two other baselines from ConVFiT (Vulić et al.,
2021) are adapted –DRoB, and mini-LM. Please
refer to Vulić et al. (2022) for more details on these
methods.

Results. The results of our experiments are
shown in table 3. First, the results demonstrate
consistent gains achieved by our method across
all three datasets. Notably, in low-data scenarios,
we observe an average increase of approximately
1% in F-scores. As anticipated, the performance
enhancements are more substantial in low-data set-
tings. However, it is noteworthy that our model out-
performs MultiConVFiT even in high-data setup.

We find the results of our base predictor and our
final classifier to be statistically significant for all
the settings of multi-class and multi-label intent
detection using the t-test (p < 0.05).

5 Conclusion

In summary, this paper presents a novel approach,
INTENDD, for intent detection and discovery
in task-oriented dialogue systems. By leverag-
ing a shared utterance encoding backbone, IN-
TENDD unifies intent classification and novel in-
tent discovery tasks. Through unsupervised con-
trastive learning, the proposed approach learns
representations by generating pseudo-labels based
on lexical features of unlabeled utterances. Ad-
ditionally, the paper introduces a two-step post-
processing setup using modified adsorption for clas-
sification tasks. While intent classification tasks
typically focus on contrastive representation learn-
ing or data augmentation, we show that a two-step
post-processing setup in a transductive setting leads
to statistically significant improvements to our base
classifier, often rivaling or at par with data aug-
mentation approaches. Extensive evaluations on
diverse benchmark datasets demonstrate the con-
sistent improvements achieved by our system over
competitive baselines.

6 Limitations

While our research provides valuable insights and
contributions, we acknowledge certain limitations
that should be considered. In this section, we dis-
cuss two main limitations that arise from our work.

First, a limitation of our proposed intent discov-
ery algorithm is its reliance on prior knowledge of
the number of intent clusters. This assumption may
not hold in real-world scenarios where the under-
lying intent structure is unknown or may change
dynamically. The requirement of knowing the ex-
act number of intent clusters can be impractical
and unrealistic, limiting the generalizability of our
approach. However, we recognize that this limi-
tation can be addressed through modifications to
our algorithm. Future investigations should explore
techniques that allow for automated or adaptive de-
termination of the number of intent clusters, mak-
ing the approach more robust and applicable to
diverse real-world settings.

The second limitation of our research lies in the
reliance on the construction of a graph using ex-
tracted keyphrases during the contrastive pretrain-



Method BANKING77 HOTELS MIXATIS

low-data high-data low-data high-data low-data high-data

DRoB (Vulić et al., 2021) 70.6 / 31.0 86.7 / 60.0 65.3 / 46.8 80.9 / 65.1 58.5 / 21.2 78.4 / 46.9
mini-LM (Vulić et al., 2021) 70.8 / 31.2 86.7 / 58.1 64.2 / 46.0 80.3 / 65.8 58.1 / 22.0 78.6 / 47.5
MultiConvFiT (Ad) 80.7 / 47.9 93.7 / 77.2 67.3 / 47.6 92.8 / 84.9 73.7 / 44.6 90.8 / 78.3
MultiConvFiT (FT) 81.9 / 49.1 94.3 / 80.5 70.2 / 51.1 93.4 / 84.0 76.5 / 51.4 91.5 / 81.1
INTENDD(Ours) 82.4 / 49.7 94.8 / 80.9 71.5 / 51.8 93.7 / 84.3 77.6 / 51.9 91.9 / 81.5

Table 3: Results for Mult-label Intent Detection. We report both F1 score and Accuracy for all the settings. The
first number in each cell is the F1 score and the second number is the accuracy. Vulić et al. (2022) proposed
two variants for MultiConvFiT - one with full fine-tuning (FT) and another with adapters (Ad). The ConvFiT
model proposed by Vulić et al. (2021) has been adapted for multi-label settings with DistilRoBERTa (DRoB), and
mini-LM as backbones. The best results for each dataset and setting are marked in bold. To establish the statistical
significance of our results, we performed the paired t-test between INTENDD and MultiConvFiT (FT) and found the
p-value in all cases to be < 0.05.

ing step, which is a common requirement across
all three tasks explored in our study. While this
graph construction step facilitates the representa-
tion learning process, it introduces a constraint
on the flexibility of modifying the graph structure.
Even a minor modification to the graph construc-
tion would necessitate retraining all systems, which
can be time-consuming and resource-intensive.
Currently, we mitigate the need for covering new ut-
terances (with no overlapping keyphrases) by sim-
ply relying on similarity from the encoder represen-
tation itself. However, it still may still lead to con-
cept drift over time, and the representation might
need to be updated by retraining all the modules
in INTENDD. In future work, we intend to explore
alternative approaches that offer more flexibility in
graph construction, allowing for easier modifica-
tions without the need for extensive retraining. By
addressing this limitation, we aim to enhance the
adaptability and scalability of our framework.
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Name |D| #Intent Tasks

CLINC-150 18,200 150 MC, ID
BANKING77 10,162 77 MC, ID
HWU64 10,030 64 MC
NLU++ 3,080 62 ML
MIXATIS 20,000 18 ML
STACK OVERFLOW 20,000 20 ID

Table 4: Dataset Statistics for the three Intent Identifi-
cation tasks explored in this work. Second column lists
the number of intent classes in each of the datasets. Key:
MC - Multiclass (Single label), ML - Multi-label, ID -
Intent Discovery.

Conference on Machine Learning, ICML’03, page
912–919. AAAI Press.

A Experimental Details

A.1 Baseline Description
Intent Discovery In the unsupervised setting, the
first two baselines use K-means algorithm (Mac-
Queen, 1967) on top of sentence embeddings from
BERT (Devlin et al., 2019) and SBERT (Reimers
and Gurevych, 2019) to cluster user utter-
ances (BERT-KM, SBERT-KM respectively).
DEC (Xie et al., 2016) is a two step deep clustering
approach involving a Stacked Autoencoder (SAE)
along with confidence based cluster assignment.
SAE-KM uses K-means with SAE (Xie et al.,
2016), DCN (Yang et al., 2017) is a method that
performs dimensionality reduction and clustering
using a joint objective function, and DAC (Chang
et al., 2017) treats the clustering problem as a pair-
wise binary classification problem to learn cluster
centers.

For the semi-supervised case, we use
CDAC+ (Lin et al., 2020), in which the
pairwise constraints from the labeled examples
are incorporated into the clustering problem.
DeepAligned (Zhang et al., 2021b) uses labeled
data to generated pseudo labels as well as pretrain
a BERT model followed by K-means clustering.
Finally, we compare our method with a very
recent method DSCC (Kumar et al., 2022) where
the authors propose an end-to-end contrastive
clustering algorithm to jointly learn cluster centers
and utterance representations via a combination
of supervised and self-supervised methods. We
report results with two backbone models used in
the paper, BERT and S-BERT.

Multiclass Intent Detection In this study, we
consider several baseline models for intent de-

IntenDD CPFT

5 10 5 10

BANKING77 0.38 0.29 0.20 0.48

HWU 0.35 0.18 0.51 0.25

CLINC150 0.32 0.21 0.39 0.18

Table 5: Standard Deviation across different runs for
Few-Shot Intent Detection. We observe that, compared
to CPFT, our method has lower variance across most
settings.

tection. The first baseline, RoBERTa-base, uti-
lizes RoBERTa as its base model, supplemented
with a linear classifier on top for classifica-
tion purposes. Another baseline, CONVBERT,
involves fine-tuning BERT using a vast open-
domain dialogue corpus consisting of 700 mil-
lion conversations (Mehri et al., 2020). Fur-
thermore, CONVBERT + Combined, an intent
detection model based on CONVBERT, adopts
example-driven training with similarity match-
ing and transformer attention observers, along
with task-adaptive self-supervised learning using
masked language modeling on intent detection
datasets. The term "Combined" refers to the opti-
mal MLM+Example+Observers setting described
in Mehri and Eric (2021). Another baseline model,
DNNC (Discriminative Nearest-Neighbor Classifi-
cation) (Zhang et al., 2020), employs a discrimina-
tive nearest-neighbor approach, matching training
examples based on similarity and employing data
augmentation during training. Additionally, it en-
hances performance through pre-training on three
natural language inference tasks. Finally, CPFT
(Contrastive Pre-training and Fine-Tuning) (Zhang
et al., 2021c) represents the current state-of-the-
art in few-shot intent detection, employing self-
supervised contrastive pre-training on multiple in-
tent detection datasets, followed by fine-tuning us-
ing supervised contrastive learning.

B Additional Results

Variance in Few-shot Intent Detection. In the
few-shot settings, we generally report lower vari-
ance than CPFT, the system with the second-best
results consistently. Table 5 shows the standard
deviation for INTENDD and CFPT, where CPFT
has a lower variance than INTENDDonly in two
out of six settings.



B.1 Comparisong with a recent data
augmentation strategy - ICDA

INTENDD currently does not incorporate any aug-
mented data in its experimental setup. We do not
compare our work with data augmentation methods
as they are orthogonal to ours. One such example
is that of ICDA (Lin et al., 2023), where a large
language model (OPT-66B) (Zhang et al., 2022) is
used to augment the intent detection datasets for
few-shot data settings. Nevertheless, we find that
our method performs better than ICDA.

INTENDD outperforms all the settings of ICDA
in both 5-shot and Full data settings. In 10-shot
settings, while INTENDDreports the best results
on HWU64, the largest configurations of ICDA re-
ports a better accuracy for the other two datasets.
The largest configuration uses 128 times more aug-
mented data than the available supervised data to
report the best results. Overall, ICDA reports an
accuracy of 89.79 % and 94.84 % on BANKING77
and CLINC150 respectively which is 0.17 % and
0.13 % more than INTENDD.

B.2 Computing Infrastructure Used
All of our experiments required access to GPU
accelerators. We ran our experiments on three ma-
chines: Nvidia Tesla A100 (80 GB VRAM), Nvidia
Tesla V100 (16 GB VRAM), Tesla A100 (40 GB
VRAM).


